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Abstract  

A common kind of model used for system modelling in engineering is the errors-in-variables (EIV) model, which has both noisy output 

and noisy input data. However, input disturbances make identification for the EIV model particularly challenging. This work addresses 

the challenge of identifying real-time EIV models adaptively. A recent study highlighted certain derivation mistakes in an accuracy 

investigation of the widely utilized Frisch technique for EIV detection. In this article, a novel approach is given to address the same 

modelling issue. System characteristics and the noise attributes are estimated from both the time domain and the frequency domain 

perspectives, with a Moving Average (MA) procedure standing in for the combined influence of the mutually independent input and 

output noises. To enhance the speed and accuracy of calculations and to make them possible to do online, a recursive version of the first 

step calculation is built. The flexibility of the suggested method to handle a variety of input processing circumstances is another bonus. 

The effectiveness and reliability of the proposed approach are shown by numerical simulations. 

Introduction  

Modelling is a crucial problem in engineering. Stochastic models are often used to represent these systems, with 

the input signals being treated as idealized ideals and the perturbed noises being added to the output signals. We 

refer to these representations as "errors-in-equation models." However, there are always external signals that 

alter the input of the systems; some of these signals cannot be accounted for in the output noises. Since the real 

physical rules of the process are more important than the prediction of future behaviour [1], it is equally 

important to investigate the modelling issue for such systems with noisy input output data. This kind of model, 

in which both the input and output measurements are subject to noise, is known as an "errors-in-variables (EIV) 

model [2]." Over the last several decades, researchers have paid a lot of effort to pinpointing EIV models. The 

usage of EIV models has spread to many fields, including econometrics, computer vision, biomedicine, 

chemical and image reconstruction, spectrum estimation, voice analysis, noise cancellation, and digital 

communications [3-8]. It is far more challenging to identify EIV models since the noise in the input 

measurements cannot be similar to the output error. EIV dynamic model identifiability was studied in [9, 10]. In 

[9], it is emphasized that second-order features cannot be used for unambiguous identification of EIV dynamic 

models. Therefore, identifying them requires previous information of a certain kind. In order to create estimate 

algorithms, identifiability must first be demonstrated [10]. Since the EIV models use noisy input data, the 

traditional least squares approach for errors-in-equation models no longer provides reliable estimates. A bias-

compensated  least squares (BCLSs) concept was presented to address this issue in [4]. The BCLS idea has been 

the foundation for a number of other algorithms, including those based on the Frisch scheme [7], the KL 

algorithm [8], the ECLS [9], the BELS [10], and others [11–15]. Although several techniques exist for 

determining distinct EIV models, it has always been challenging to achieve algorithmic convergence. Only a 

small number of works [12, 15, 16] have attempted to provide a solution to this issue. The accuracy of the Frisch 

scheme for EIV identification was studied in [16], where it was shown that the linearization of the scheme's 

three main equations yielded asymptotically Gaussian distributions for both the estimated system parameters 

and the noise variance. This result might be seen as theoretical backing for algorithms based on the Frisch 

scheme. Recent expansions and practical applications [17–20] of this work confirm the significance of this 

analytical outcome. Parameter estimations are required for the analysis in [16], but it is unclear how to verify 

that they are near to the genuine values. Convergence failure in a counterexample was discovered in [21], and 

certain derivation flaws in [16] were also discovered and discussed. In addition, another strategy for determining 

the EIV model was described in [21]. However, the model addressed in [21] was a simpler one with a stronger 

requirement that the input and output noise processes had the same variance, which has been hindering its 

application to some degree in comparison to the model concerned in [16] owing to the complexity of the 

identification issue. 

Problem Statement  
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Figure 1 depicts a simple example of a dynamic EIV system. The EIV model differs from the standard errors-in-

equation model in that it accounts for noise in both input and output data. A dynamic system, which may be 

linear or nonlinear depending on the context, connects the unobservable true input and output processes u0(t) 

and y0(t). Too far, the majority of research in this area has been on linear systems.  

 

Figure 1: A basic errors-in-variables system. research in this paper. 

The ARX(𝑛𝑎, 𝑛𝑏) model is considered here as 

 

are the polynomials in the backward shift operator 𝑧. The {𝑎1, 𝑎2,𝑎 , 𝑏1, 𝑏2,𝑏𝑛𝑏 }are the unknown system 

paramenters to be identified, while the measured variables 𝑢(𝑡) and 𝑦(𝑡) are disturbed by the unknown noises 

𝑢(𝑡        𝑦(𝑡      Thus, the input and output measurements are 

 

 

the EIV system can be described as the following model 

 

We begin with a set of assumptions to guarantee uniqueness. (A1) There is no zero of A(z) within the unit 

circle, hence the EIV system is asymptotically stable. There is no correlation between the noises u(t) and y(t) 

and the genuine input and output signals u0(t) and y0(t), as required by (A2). Both u(t) and y(t) in (A3) are 

white sounds with zero mean and zero correlation between them. Our goal is to use the observed regressor 

vector (t) to make an estimate of the system parameter vector. Since the mean and variance may both be used to 

characterize a noise process, it is easier to pinpoint the sources of input and output sounds that have zero mean. 

Therefore, it is desirable to estimate not only the system parameters but also the output and input noise variances 

y and u. In the following, we detail a two-step procedure that satisfies both of these components of the estimate. 
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Methods of Identifying  

Because of the uncertain nature of the input and output sounds, system identification for an EIV system is 

notoriously challenging. Since two sequences of independent random variables can be represented as an MA 

process which has the same spectra with the two jointly sequences [22], we will use another MA process w(t) to 

counteract the effect of the input noise on the EIV system described in Section 2. The system may then be 

transformed into an ARMAX model, with the subsequent changes required to estimate the new model's system 

parameters and to calculate the input/output noise variances in terms of w(t). To determine the system 

parameters and the noise variances y and u, a two-stage recursive estimate procedure may be developed. First, 

we estimated the parameters and produced the most up-to-date estimates of (t) and w(t) by using the acquired 

estimation of w(t 1). Second, the estimates of the noise variance y(t) and u(t) are derived from these values. The 

algorithm and proof will be shown below. First-stage estimate of the system's unknown parameter. Let's call the 

final two terms of (5) V(t) for short. 

 

where 𝑢(𝑡        𝑦(𝑡                                  

 

 

Introduce an MA(𝑛𝑐) process 

 

where {𝑒(𝑡)} is white noise with 

 

It can be shown that we can find a pair of {𝑐𝑖,0 ≤ 𝑖 ≤ 𝑛𝑐} and 𝜆𝑒 such that {𝑤(𝑡)} and {V(𝑡)} have the same 

spectra [22], which means that {V(𝑡)} can be represented by {𝑤(𝑡)} in (8) as 

 

The  

 

and 𝜆𝑒 are intermediate variables. 

For the new model (10), denote a new parameter vector 𝜃 and a new regressor vector (𝑡) by 

 

and then the EIV system (5) can be rewritten as 

 

In this step, we will give a recursive algorithm to identify (13). The covariance matrix of the regressor vector (𝑡) 
and output variables (𝑡) is denoted by 
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For convenience, introduce 

 

Assume that the input {(𝑡)} is a stationary process; in the calculation, we can use the algebra means 𝑅  (𝑡)/𝑡 and 

𝑟  𝜑𝑦(𝑡)/𝑡 instead of the mathematical expectations 𝑅𝜑 and 𝑟𝜑𝑦 in (14), as by ergodicity, we have 

 

Lemma 1 (Matrix Inversion Formula [23]). For the matrices 

 

 

the inverse matrix of 

 

 

 

 Simulation Examples  

This section addresses some numerical evaluation of the identification algorithm presented in this paper. 

MATLAB 7.7 is used to do the simulations. To demonstrate its vapidness to various EIV systems, we have 

chosen different signal processes as the true input variables {𝑢0(𝑡)} in each case: in Case A, a zero-mean 

Gaussian process is used; in Case B, a sawtooth signal is applied; in Case C, it is an ARMA process. The noise 

processes {(𝑡           𝑡                                                        e signals with zeromean. The 

robustness of the algorithm is also tested, which is shown in Case C. Case A. First, we examine how well the 

algorithm works for systems with Gaussian input. Consider an EIV dynamic system with 𝑛𝑎 = 𝑛𝑏 = 2 and   

 

It is easy to get the system as follows, which is denoted by System 1: 

 

 

let the input signal {𝑢0(𝑡)} be a zero-mean Gaussian process whose variance equals 1. Let the noise signals 

{(𝑡           𝑡                                                       𝜆𝑦 = 0.2, 𝜆𝑢 = 0.5, which means a strong 

noise environment for the system. The system is simulated for 𝑁 = 8000 steps. Calculation results are listed in 

Table 1, where the calculation error is defined by the standard deviation. Figures 2 and 3 show the system 

parameter and the noise variances estimates separately. Solid lines indicate the true values and dashed lines 
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denote the corresponding estimates. Noting that the vertical coordinate scopes are very small in both figures, it 

can be seen easily that the estimates are converging fast to the true parameters 

Case B. Consider another system, System 2, with sawtooth input 

 

 

Figure 2: Estimation result of 𝜃 in System 1. 

 

Figure 3: Estimation result of 𝜆𝑦 and 𝜆𝑢 in System 1. in which 𝑛𝑎 = 𝑛𝑏 = 𝑛𝑐 = 2, and 

 

This is the counterexample which was presented in [21] to show the convergency of the Frisch-based method 

analysed in [16]. We use our proposed algorithm to identify this system under the same conditions; that is, the 

                     ’             q     1         f  q         10 Hz;           ’ v             

 

The simulation results of the system parameters and the noise variances are all displayed in Figure 4. The true 

values and estimates are also denoted by solid lines, and dotted lines respectively. We can see that the algorithm 

has an even better performance for this kind of EIV system. All the estimates converge to their corresponding 

true values consummately. 

Conclusions  

In this study, we looked at the issue of identifying systems with dynamic errors in variables (EIVs). Cascade 

system modelling and camera calibration are only two examples of the many technical uses for the EIV model. 

The noise issue with the EIV model's input data is more problematic than with other errors-in-equation models. 

Recent research has highlighted various serious flaws in the earlier examination of the appealing Frisch scheme 

identification techniques;thus, we created an adaptive algorithm to address the same modelling issue. Due to its 

recursive nature, this two-step technique can estimate the system parameter vector and the noise variances with 
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improved precision for the dynamic EIV model with mutually independent input and output noises, while also 

greatly reducing the computational complexity. Numerical simulations have demonstrated that the provided 

approach achieves high levels of accuracy and convergence quickly while maintaining strong antinomies 

performance. More advanced models, such as EIV nonlinear models, will be evaluated in further research, and 

theoretical analysis of the suggested method will be performed. 
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